On the q-Bessel Fourier transform
نویسنده
چکیده
In this work, we are interested by the q-Bessel Fourier transform with a new approach. Many important results of this q-integral transform are proved with a new constructive demonstrations and we establish in particular the associated q-Fourier-Neumen expansion which involves the q-little Jacobi polynomials.
منابع مشابه
ON THE q - BESSEL FOURIER TRANSFORM ( COMMUNICATED BY R . K RAINA )
In this work, we are interested by the q-Bessel Fourier transform with a new approach. Many important results of this q-integral transform are proved with a new constructive demonstrations and we establish in particular the associated q-Fourier-Neumen expansion which involves the q-little Jacobi polynomials.
متن کاملEstimates for the Generalized Fourier-Bessel Transform in the Space L2
Some estimates are proved for the generalized Fourier-Bessel transform in the space (L^2) (alpha,n)-index certain classes of functions characterized by the generalized continuity modulus.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملHeisenberg Uncertainty Principle for the q-Bessel Fourier transform
In this paper we uses an I.I. Hirschman-W. Beckner entropy argument to give an uncertainty inequality for the q-Bessel Fourier transform: Fq,vf(x) = cq,v ∫ ∞ 0 f(t)jv(xt, q 2)t2v+1dqt, where jv(x, q) is the normalized Hahn-Exton q-Bessel function.
متن کاملOn Some Inequalities of Uncertainty Principles Type in Quantum Calculus
The aim of this paper is to generalize the q-Heisenberg uncertainty principles studied by Bettaibi et al. 2007, to state local uncertainty principles for the q-Fourier-cosine, the q-Fourier-sine, and the q-Bessel-Fourier transforms, then to provide an inequality of Heisenberg-Weyl-type for the q-Bessel-Fourier transform.
متن کامل